1)

Fraction	Method Used	Decimal
$\frac{13}{20}$	$\frac{13}{20} \times \frac{5}{5}=\frac{65}{100}=0.65$	0.65
$\frac{3}{20}$	$\frac{3}{20} \times \frac{5}{5}=\frac{15}{100}=0.15$	0.15
$\frac{4}{25}$	$\frac{4}{25} \times \frac{4}{4}=\frac{16}{100}=0.16$	0.16
$\frac{3}{5}$	$\frac{3}{5} \times \frac{2}{2}=\frac{6}{10}=0.6$	0.6
$\frac{3}{4}$	$\frac{31}{4} \times \frac{25}{25}=\frac{75}{100}=0.75$	0.75
$\frac{31}{50}$	30	

2) a) 0.16
b) $0.6,0.62,0.65,0.75$
c) 0.15
d) 0.6 and 0.15
3) Monika could halve $\frac{24}{40}$ to give her the fraction $\frac{12}{20}$. She would then have a denominator that will make 100 when multiplied by 5 .

$\frac{12}{20} \times \frac{5}{5}=\frac{60}{100}$ or $\frac{6}{60}$ or 0.6

Another effective strategy for Monika to use would be to find a common factor of the numerator and the denominator - a number that will divide into both with no remainder. In this example, 4 will divide into 24 and 40 so Monika can simplify the fraction in order to get $\frac{6}{10}$ or 0.6.
2)
a) This is true. $\frac{40}{50}=\frac{80}{100}=0.8$
b) We can see that this is false as 0.5 is equivalent to $\frac{1}{2}$. For a fraction to be equivalent to $\frac{1}{2}$, the numerator would need to be half of the denominator and that is not true of $\frac{100}{250} .\left(\frac{100}{250}=0.4\right)$
c) $\frac{6}{8}=\frac{3}{4}$ and $\frac{16}{20}=\frac{80}{100}$ or $\frac{8}{10}$

When all of the fractions are converted to decimals, we can see that the statement is true. $0.75<0.85>0.8$

1) $\frac{3}{4}($ or 0.75$)+\frac{4}{20}+0.05=1 \quad \frac{3}{24}+\frac{300}{500}+0.275\left(\right.$ or $\left.\frac{11}{40}\right)=1$
2) A variety of answers are possible. One example answer is shown for each number statement.
a) $\frac{5}{20}+\frac{50}{200}+0.5=1$
b) $\frac{10}{25}+\frac{5}{50}+0.2=0.7$
c) $\frac{6}{8}+\frac{5}{500}+0.1=0.86$
